top of page
Electronic Chip

Welcome to the Device Spectroscopy Lab

The Device Spectroscopy Laboratory, DSL, here at Bar-Ilan University is focused on spectroscopy of nanoscale materials and devices composed of such materials.  Our efforts are concentrated on understanding and tailoring light-matter interactions at the most fundamental level, and then on parlaying these insights into useful devices.

Home: Welcome
Home: Testimonials

Dr. Bharathi Rajeswaran Presented at 2022 MRS Spring Meeting (virtual) on
"Tip Enhanced Rayleigh Scattering via a Gap Mode in Transmission Geometry"


May 24, 2022

Research Interests and Scientific Activities

Major research interest at Device Spectroscopy Laboratory is studying and tailoring light-matter interactions inside of nanoscale devices.  The devices are not restricted to lasers and LEDs, but can even be microcavities, semiconductor nanostructures or biological materials such as proteins and bacteria.

Coherent Light-Matter Interactions

Colored Theatre Lights

At our group, we intensively study CLM Interactions. We are interested in using microcavity devices to enhance light-matter interactions, such as for strong light-matter coupling in the mid-infrared, and for monolayer lasers.

Near-Field Spectroscopy

Microscope

In an effort to gain a better understanding of materials at nano-scale spatial resolution, we employ techniques such as NSOM, dual SPM probe AFM:NSOM, and TERS (Tip-Enhanced Raman Scattering).

Applied Spectroscopy

Rainbow Light Art

We develop the methodologies of Low-Frequency Raman  Spectroscopy for characterizing nanostructured materials, such as organic, semiconducting, perovskite, biological and organic/inorganic hybrids. We also investigate methods of enhancing Raman scattering.

Home: Research

Ongoing Research Projects

Home: Projects
Microscope

Coherent Infrared Emission from Organic Materials

Team

We are a team of researchers, including students, post-docs, and staff scientists, that are passionate about multiple domains of science, ranging from chemistry and materials to physics and optics.  Most of all, we enjoy working together and striving to have a positive and meaningful impact on society.

YRT Website.jpg

Prof. Yaakov R. Tischler

Principal Investigator

IMG_20190319_211332__01.jpg

Dr. Hagit Aviv

Lab. Manager

IMG_20180902_104115_edited.jpg

Rena Itzhari

Doctoral Researcher

Shalom Pic_edited.jpg

Shalom Avadyayev

Doctoral Researcher

DSC_6967 copy.jpg

Dr. Bharathi Rajeswaran
Post Doctoral Researcher

A4433386-BDE0-42C6-B3CF-FEBEAFB026D7.jpe

Shira Rachel Zafran
Graduate Researcher

Home: Team Members

The magic of DSL is the students and staff.  Thankfully, I have students and staff who come with a high aptitude for scientific work and who possess tremendous desire to succeed.  I have also learned not only to manage students, but to nurture them, motivate them, and lead them, and ultimately empower them to be independent scientific thinkers, doers, and leaders.  I have found that success is a natural by-produce of character, and so I promote building the character of the people in my lab, to help them expand their comfort zones, to work together as a team, and to develop the desire to attain personal and collective goals.  In my opinion, the lab is a powerhouse in the subject areas of device spectroscopy. To the greatest extent possible, we also share our expertise in spectroscopy, joining forces with other labs in collaborations and in providing assistance to meet their characterization needs.

Yaakov R. Tischler

Home: Testimonials
Robotic Lab Assistant
Robotic Lab Assistant

Patents

Home: Publications

Issued Patents

  1. “Device and Method for Luminescence Enhancement by Resonant Energy Transfer from an Absorptive Thin Film,” G.M. Akselrod, M.G. Bawendi, V. Bulović, J.R. Tischler, W.A. Tisdale, B.J. Walker, US 8,908,261, December 9, 2014.

  2. “Absorbing Film,” M.S. Bradley, J.R. Tischler, V. Bulović, US 8,809,876, August 19, 2014.

  3. “Method and Apparatus for Super Radiant Laser Action in Half Wavelength Thick Organic Semiconductor Microcavities,” J.R. Tischler, E.R. Young, D.G. Nocera, V.Bulović, US 8,748,219, June 10, 2014.

  4. “High Resolution Near Field Scanning Optical Microscopy,” J.R. Tischler, M.S. Bradley, V. Bulović, US 8,693,837, April 8, 2014.

  5. “LED Array with Photodetector,” V. Bulović, J.R. Tischler, J. Galela, US 8,692,747, April 8, 2014.

  6. “Light emitting material," J.E. Halpert, J.R. Tischler, M.G. Bawendi, V. Bulović, US 8,480,927, July 9, 2013.

  7. “Optical structures including nanocrystals," V. Bulović, I. Kymissis, M.G. Bawendi, J.R. Tischler, M.S. Bradley, D. Oertel, J. Yu, US 8,472,758, June 25, 2013.

  8. “Light-absorbing structure and methods of making,” J.R. Tischler, M.S. Bradley, V. Bulović, US 8,449,125, May 28, 2013.

  9. “LED Array with Photodetector,” V. Bulović, J.R. Tischler, J. Yu,US 8,390,544, March 5, 2013.

  10. “LED Array with Photodetector,” V. Bulović, J.R. Tischler, J. Yu, US 8,264,431, September 11, 2012.

  11. “Absorbing Film,” J. Tischler, M.S. Bradley, V. Bulović, US 7,799,422, September 21, 2010.

  12. “Light Emitting Device,” J. Tischler, M.S. Bradley, V. Bulović, US 7,649,196, January 19, 2010.

Provisional Patents

  1. “Multi-Layer Devices based on Hybrid Perovskites and Film Transfer Technology,” Y.R. Tischler, et al., US Provisional Patent Application, Serial No. US 62/743,564, October 10, 2018.

  2. “Device and Method to Spectrally Resolve Optical Radiation,” Y. R. Tischler, et al., US Provisional Patent Application, Serial No. 62/717,850, September 17, 2018.

  3. “Chiral Purity of Crystals Using Low-Frequency Raman Spectroscopy,” Y. Tischler, at al., US Provisional Patent Application, Serial No. 62/675,789, May 24, 2018.

Piles of Paper
Piles of Paper

Publications

Home: Publications
  1. "Structural Characterization and Room Temperature Low-Frequency Raman Scattering from MAPbI3 Halide Perovskite Films Rigidized by Cesium Incorporation "Vinayaka H. Damle, Laxman Gouda, Shay Tirosh, and Yaakov R. Tischler, ACS ApplEnrgMat. (Dec. 2018)
    https://pubs.acs.org/doi/10.1021/acsaem.8b01539

  2. "Chiral Purity of Crystals Using Low‐Frequency Raman Spectroscopy", I. Nemstov, Y. Mastai, Y. R. Tischer, H. Aviv, ChemPhysChem, 19, p. 1-7, (Sept. 2018) 
    https://onlinelibrary.wiley.com/doi/epdf/10.1002/cphc.201800739

  3. "Characterization of peptides self-assembly by low frequency Raman spectroscopy", M. Ronen, B. S. Kalanoor, Z. Oren, I. Ron, Y. R. Tischler, D. Gerber, RSC Advances, 8(29), p. 16161-16170 (April 2018).
    http://pubs.rsc.org/en/content/articlehtml/2018/ra/c8ra01232f

  4. "Characterization of Crystal Chirality in Amino Acids Using Low-Frequency Raman Spectroscopy", H. Aviv, I. Nemtsov, Y. Mastai, Y. R. Tischler, J. Phys. Chem A, 121(41), p. 7882-7888 (October 2017)
    https://pubs.acs.org/doi/abs/10.1021/acs.jpca.7b07033

  5. "Vibrational Strong Light–Matter Coupling Using a Wavelength-Tunable Mid-infrared Open Microcavity", O. Kapon, R. Yitzhari, A. Palatnik, Y. R. Tischler, J. Phys. Chem. C, 121(34), p. 18845-18853 (July 2017).
    https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.7b06999

  6. "Replacing a Century Old Technique–Modern Spectroscopy Can Supplant Gram Staining", S. Berezin, Y. Aviv, H. Aviv, E. Goldberg, Y. R. Tischler, Scientific Reports, 7(1), p. 3810 (June 2017).
    https://www.nature.com/articles/s41598-017-02212-2

  7. "Microcavity Laser Based on a Single Molecule Thick High Gain Layer", A. Palatnik, H. Aviv, Y. R. Tischler, ACS Nano, 11(5), p. 4514-4520 (April 2017).
    https://pubs.acs.org/doi/abs/10.1021/acsnano.6b08092

  8. "New Method to Study the Vibrational Modes of Biomolecules in the Terahertz Range Based on a Single-Stage Raman Spectrometer", B. S. Kalanoor, M. Ronen, Z. Oren, D. Gerber, Y. R. Tischler, ACS Omega, 2(3), p. 1232-1240 (March 2017).
    https://pubs.acs.org/doi/abs/10.1021/acsomega.6b00547

  9. “The effect of excitation wavelength and metallic nanostructure on SERS spectra of C60”, M. Sinwani, M. Muallem, Y. R. Tischler, Journal of Raman Spectroscopy, (March 2017).
    https://onlinelibrary.wiley.com/doi/full/10.1002/jrs.5126

  10. “Deposition and Characterization of Roughened Surfaces”, H. Aviv, S. Berezin, O. Agai, M. Sinwani, Y. R. Tischler, Langmuir, (Feb. 2017). 
    http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.6b04392

  11. “Low Cost Method for Generating Periodic Nanostructures by Interference Lithography Without the Use of an Anti-Reflection Coating”, O. Kapon, M. Muallem, A. Palatnik, H. Aviv, Y. R. Tischler, MRS Advances, pp. 1-6, (Jan. 2017).
    https://doi.org/10.1557/adv.2017.121

  12. “Influence of gain material concentration on an organic DFB laser”, A. Palatnik, O. Bitton, H. Aviv, Y. R. Tischler, Optical Materials Express, 6 (9), 2715-2724 (Sept. 2016).
    https://www.osapublishing.org/ome/abstract.cfm?uri=ome-6-9-2715

  13. “Solid State Rhodamine 6G Microcavity Laser”, A. Palatnik, Y. R. Tischler, IEEE Photonics Technology Letters, (May 2016).
    http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7479548

  14. “Strong Light-matter Coupling and Hybridization of Molecular Vibrations in a Low-Loss Infrared Microcavity”, M. Muallem, A. Palatnik, G. Nessim, Y. R. Tischler, J. Phys. Chem. Lett., 7 (11), pp 2002-2008, (May 2016).
    http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.6b00617

  15. “Strong Light-matter Coupling Between a Molecular Vibrational Mode in a PMMA Film and a Low-loss Mid-IR Microcavity”, M. Muallem, A. Palatnik, G. Nessim, Y. R. Tischler, Annalen der Physik, 528, pp 313-320, (Apr. 2016).
    http://onlinelibrary.wiley.com/doi/10.1002/andp.201500282/full

  16. “Third order optical nonlinearities in organometallic methylammonium lead iodide perovskite thin films”, B.S. Kalanoor, A. Zaban, Y.R. Tischler, ACS Photonics, 3, pp 361-370 (Feb. 2016).
    http://pubs.acs.org/doi/abs/10.1021/acsphotonics.5b00746

  17. “Spectroscopic method for fast and accurate Group A Streptococcus bacteria detection”, D. Schiff, H. Aviv, E. Rosenbaum, Y.R. Tischler, Analytical Chemistry, 88, pp 2164-2169 (Jan. 2016).
    http://pubs.acs.org/doi/abs/10.1021/acs.analchem.5b03754

  18. “A simplified method for generating periodic nanostructures by interference lithography without the use of an anti-reflection coating”, O. Kapon, M. Muallem, A. Palatnik, H. Aviv, Y. Tischler, Applied Physics Letters, 107, 201105, (Nov. 2015).
    http://scitation.aip.org/content/aip/journal/apl/107/20/10.1063/1.4936088

  19. “Photoinduced Reversible Structural Transformation in Free Standing CH3NH3PbI3 Perovskite Films”, R. Gottesman, L. Gouda, B. S. Kalanoor, E. Haltzi, S. Tirosh, E. Rosh Hodesh, Y. R. Tischler, A. Zaban, J. Phys. Chem. Lett., 6, pp 2332–2338, (June 2015).
    http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.5b00994

  20. “Utilizing pulsed laser deposition lateral inhomogeneity as a tool in combinatorial material science”, D. A. Keller, A. Ginsburg, H. Barad, K. Shimanovich, Y. Bouhadana, E. Rosh-Hodesh, I. Takeuchi, H. Aviv, Y. R. Tischler, A. Anderson, A. Zaban, ACS Combinatorial Science, 17, p. 209-216, (Apr. 2015).
    http://pubs.acs.org/doi/abs/10.1021/co500094h

  21. “Synthesis and characterization of a J-aggregating TDBC derivative in solution and in Langmuir-Blodgett films”, H. Aviv and Y. R. Tischler, Journal of Luminescence, 158, p. 376-383, (Feb. 2015).
    http://www.sciencedirect.com/science/article/pii/S0022231314005900

  22. “Room temperature fabrication of dielectric Bragg reflectors composed of a CaF2/ZnS multilayered coating”, M. Muallem, A. Palatnik, G. Nessim, Y. Tischler, ACS Applied Materials & Interfaces, 7, 1, p. 474-481, (Jan. 2015).
    http://pubs.acs.org/doi/abs/10.1021/am506531p

  23. “Super-resolved Raman Spectra of Toluene and Toluene-Chlorobenzene Mixture, D. Malka, G. Berkovic, Y. Tischler, Z. Zalevsky, Spectroscopy Letters, 48, 6, p. 431-435, (Jan. 2015).
    http://www.tandfonline.com/doi/abs/10.1080/00387010.2014.905960

  24. “Synthesis of an amphiphilic rhodamine derivative and characterization of its solution and thin film properties”, H. Aviv, S. Harazi, D. Schiff, Y. Ramon, Y. R. Tischler, Thin Solid Films, 564, p. 86-91, (Aug. 2014).
    http://www.sciencedirect.com/science/article/pii/S0040609014005446

  25. “Millimeter-Tall Carpets of Vertically Aligned Crystalline Carbon Nanotubes Synthesized on Copper Substrates for Electrical Applications”, E. Teblum, M. Noked, A. Kerman, M. Muallem, Y. R. Tischler, D.  Aurbach, G. Nessim, J. Phys. Chem. C, 118, p. 19345-19355, (Aug. 2014).
    http://pubs.acs.org/doi/abs/10.1021/jp5015719

  26. “Reduced lasing threshold from organic dye microcavities”, G. M. Akselrod, E. R. Young, K. W. Stone, A. Palatnik, V. Bulovic, Y. R. Tischler, Physical Review B, 90, 035209, (July 2014).
    http://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.035209

  27. “Raman and photoluminescence properties of red and yellow Rubrene crystals”, M. Sinwani, Y R. Tischler, Journal of Physical Chemistry C, 118, 14528- 14533, (July 2014).
    http://pubs.acs.org/doi/abs/10.1021/jp5032338

  28. “Multiprobe NSOM fluorescence”, S. Berezin, B. S. Kalanoor, H. Taha, Y. Garini, Y. R. Tischer, Nanophotonics, 3, 117- 124, (Apr. 2014).
    http://www.degruyter.com/view/j/nanoph.2014.3.issue-1-2/nanoph-2014-0008/nanoph-2014-0008.xml

  29. “Quantum Efficiency and Bandgap Analysis for Combinatorial Photovoltaics: Sorting Activity of Cu–O Compounds in All-Oxide Device Libraries”, A. Anderson, Y. Bouhadana,H. Barad, B. Kupfer, E. Rosh-Hodesh, H. Aviv, Y. R. Tischler, S. Rühle, A. Zaban, ACS Comb. Sci., 16 (2): 53–65 (Jan. 2014).
    http://pubs.acs.org/doi/abs/10.1021/co3001583

  30. “Basic model of absorption depth and injection levels in silicon under intermediate illumination levels”, R. Aharoni, M. Sinvani, Y. R. Tischler, Z. Zalevsky, Optics Communications, 291: 1-6 (Mar. 2013).
    http://www.sciencedirect.com/science/article/pii/S0030401812012278

  31. “Exciton-exciton annihilation in organic polariton microcavities”, G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, V. Bulović, Physical Review B, 82 (11) Art. No. 113106 (Sept. 2010)
    http://journals.aps.org/prb/abstract/10.1103/PhysRevB.82.113106

  32. “Efficient Förster energy transfer from phosphorescent organic molecules to J-aggregate thin films”, Y. Shirasaki, P. O. Anikeeva, J. R. Tischler, M. S. Bradley, V. Bulović, Chemical Physics Letters, 485 (1-3): 243-246 (Jan. 2010).
    http://www.sciencedirect.com/science/article/pii/S0009261409015309

  33. “Electrostatic Formation of Quantum Dot/J-aggregate FRET Pairs in Solution”, J. E. Halpert, J. R. Tischler, G. Nair; B. J. Walker, W. H. Liu, V. Bulović, M. G. Bawendi, The Journal of Physical Chemistry C, 113 (23): 9986-9992 (June 2009).
    http://pubs.acs.org/doi/abs/10.1021/jp8099169

  34. “Synthesis of J-Aggregating Dibenz[a,j]anthracene-Based Macrocycles,” J. M. W. Chan, J. R. Tischler, S. E. Kooi, V. Bulović, T. M. Swager, Journal of the American Chemical Society, 131 (15): 5659-5666 (Apr. 2009).
    http://pubs.acs.org/doi/abs/10.1021/ja900382r

  35. “Predicting the linear optical response of J-aggregate microcavity exciton-polariton devices,” M. S. Bradley, J. R. Tischler, Y. Shirasaki, V. Bulović, Physical Review B, 78 (19): Art. No. 193305 (Nov. 2008).
    http://journals.aps.org/prb/abstract/10.1103/PhysRevB.78.193305

  36. “Using integrated optical feedback to counter pixel aging and stabilize light output of Organic LED display technology,” J. Yu, J. R. Tischler, C. G. Sodini, V. Bulović,  IEEE Journal of Display Technology, 4 (3) 308 (Sept. 2008)
    http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4484937

  37. “Highly efficient resonant coupling of optical excitations in hybrid organic/inorganic semiconductor nanostructures,” Q. Zhang, T. Atay, J. R. Tischler, M. S. Bradley, V. Bulović, A. V. Nurmikko, Nature Nanotechnology, 2 (9): 555-559 (Sept. 2007).
    http://www.nature.com/nnano/journal/v2/n9/abs/nnano.2007.253.html

  38. “Solid state cavity QED: Strong coupling in organic thin films,” J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, V. Bulović, Organic Electronics, 8 (2-3): 94-113 (Apr. - June 2007).
    http://www.sciencedirect.com/science/article/pii/S1566119907000079

  39. “Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film,” J. R. Tischler, M. S. Bradley, V. Bulović, Optics Letters, 31 (13): 2045-2047 (July 2006).
    https://www.osapublishing.org/ol/abstract.cfm?uri=ol-31-13-2045

  40. “Highly efficient blue electroluminescence from poly(phenylene ethynylene) via energy transfer from a hole-transport matrix,” C. A. Breen, J. R. Tischler, V. Bulović, T. M. Swager, Advanced Materials, 17 (16) 1981 (Aug. 2005).
    http://onlinelibrary.wiley.com/doi/10.1002/adma.200500185/full

  41. “Layer-by-layer J-aggregate thin films with a peak absorption constant of 106 cm-1”, M. S. Bradley, J. R. Tischler, V. Bulović, Advanced Materials, 17 (15) 1881 (Aug. 2005).
    http://onlinelibrary.wiley.com/doi/10.1002/adma.200500233/full

  42. “Strong Coupling in a microcavity LED, ”J. R. Tischler, M. S. Bradley, V. Bulović, J. H., A. Nurmikko, Physical Review Letters, 95 (3): Art. No. 036401 (July 2005). 
    http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.036401

  43. “Exciton-polariton dynamics in a transparent organic semiconductor microcavity,” J. H. Song, Y. He, A. V. Nurmikko, J. Tischler, V. Bulović, Physical Review B, 69 (23): Art. No. 235330 (June 2004).
    http://journals.aps.org/prb/abstract/10.1103/PhysRevB.69.23533

Contact Us

Thanks for your interest in our research. Get in touch with any questions or comments regarding our work and publications. We’d love to hear from you.

03-7384514

Thanks for submitting!

Traditional Library
Home: Contact
bottom of page